

Topologies Comparison for Wind Turbine Electrolyser Power Supply

CPE 2023 – July 2023 Dr Fisal Al Kayal, Dynex Semiconductor Ltd

Agenda

- Introduction to Dynex Semiconductor
- Why Hydrogen
- Power supply topologies comparison
- Validation
- Conclusion

INTRODUCTION TO DYNEX

- Over 60 years' experience in the design and build of Power Semiconductors and Heatsink Assemblies
- Manufacture IGBTs, Diodes, Thyristors, GTOs and Heatsink Assemblies
- Based in Lincoln, 2x 6" Silicon Wafer manufacturing lines with a combined capacity of 80,000 wafers per annum
- Bespoke Assemblies designed, manufactured and tested in-house

Semiconductor Manufacturing

Converter Design and Assembly

Packaging Design

High Power Test

Product technologies overview

Product technologies overview

DESIGN CAPABILITIES

Applications Support, Clamp provision, System Design and Construction

- Team of experienced experts in Device Physics, Electrical, Electronic and Mechanical Engineering
- Tailored design to meet specifications
- In-depth knowledge of wear out mechanisms to design Assemblies for a range of applications
- Ability to tailor device performance and packaging to suit needs of the application
- Electrical circuit, mechanical stress and CFD simulation expertise

MANUFACTURING CAPABILITIES

Assembly, Test and Manufacturing Engineering

- Experienced team trained in high voltage wiring, crimping, clamping and other manufacturing processes
- Full traceability of materials and operatives
- In house machining capability
- In house test facility to test full range of product
- Process traceability with barcode scanning of sub-components and data verification
- ESD clean room assembly facility and environment with Semi-Automated mount down and assembly equipment
- Adaptable to work on lower quantity product as well as larger production runs

On-site Power Testing Facility

The Power Assemblies group can provide on-site power testing. Assembled products can be verified for standard end of line testing for example, isolation tests, partial discharge measurements and switching tests. The team can provide specialised tests on custom assemblies, such as high energy crowbars and controlled 3 phase rectifiers, testing up to 100kV and 4kA.

As part of the test facility we are able to perform pressure and thermal heat run tests using our localised liquid cooling plant for assemblies that use liquid flow rates up to 120 L/min.

POWER FACTOR CORRECTION

TCR & TSC outlines for Power Conditioning

- Water cooled and force air outlines for Power Factor Correction
- Collaborative design effort with end customer to provide a tailored semiconductor to suit the application
- Proven designs have been in operation for >80,000 hours
- Designs up to 400Mvar/37kV TCR down to 5Mvar/1.4kV TSC
- Water cooled snubber
- Incorporation of customers free issue components

EXCITATION & ELECTROLYSIS SYSTEMS

High Power rectifiers for Hydro dam Excitation and Hydrogen Electrolysis

- High power rectifier systems for demanding applications
- Tailored design with redundancy and maintainability built in
- Assembly design to withstand corrosive environment
- Designed with complimentary crowbars and anti-spike filters
- Proven design with >60,000 operation in high humidity environment

STANDARD POWER ASSEMBLIES

Clamps, Rectifiers, AC Switches, Crowbars

- A selection of standardised outlines in proven natural convection, forced air and water cooled designs
- A range of standard clamps matched to our devices with options on mounting and isolation
- Options for Gate Drives for high isolation
- Snubbers designed to suit application
- Options for resistance to corrosive environments

TRACTION CONVERTER UPGRADE AND OVERHAUL

Railway Converter Maintenance, Repair, Obsolescence Management & Repowering

- Converter mid-life upgrade/overhaul
- Reliability improvements
- Spares and Repairs
- Propulsion modernisation and upgrade
- Obsolescence management
- Support for track side applications such as rectification circuits

Dynex designed converter for Class 73 retraction project (IGBT)

Class 91 Heatsink refurbishment (GTO and Diode)

Class 92 Heatsink refurbishment (GTO and Diode)

Agenda

- Introduction to Dynex Semiconductor
- Why Hydrogen
- Power supply topologies comparison
- Validation
- Conclusion

WHY HYDROGEN?

Hydrogen is the most abundant chemical element estimated to contribute 75% of the mass of the universe

Why is hydrogen important?

Hydrogen is a chemical that can be "burnt" to produce energy When Hydrogen is "burnt" the ONLY waste product is water vapour & oxygen (NO CO_2)

Think of Hydrogen as an alternative storage medium (like a battery)

What can Hydrogen be used for?

- Powering vehicles (hydrogen fuel cells
- Energy generation(turbine)
- Energy storage

TYPE OF HYDROGEN?

There are more than one type of Hydrogen based on the technology used to produce it

Green Hydrogen – Made using renewable energy sources (solar/wind etc) Blue Hydrogen – Produced from natural gas by steam reforming. Low carbon hydrogen Grey Hydrogen – Produced from natural gas, methane etc. Most common form a the moment Black/Brown hydrogen – Produced from black coal Pink hydrogen – Produced from nuclear energy sources Yellow hydrogen – Produced solely from solar power White hydrogen – Natural hydrogen sourced by "fracking"

OUR FOCUS WILL BE GREEN & YELLOW HYDROGEN EQUIPMENT

WHAT DOES HYDROGEN ELECTROLYSER DO?

A hydrogen electrolyser is the apparatus that produces hydrogen through a chemical process (electrolysis)

If using renewable energy sources then green or yellow hydrogen can be produced without emitting ANY carbon dioxide.

Hydrogen produced can then be stored until required to:-

- Power vehicles
- Produce electricity
- Be easily transported to another location

TYPE OF HYDROGEN ELECTROLYSER

There are different types of electrolysers that can vary in size and function

Alkaline Electrolyser

- Oldest method.
- Can be bulky
- Only produce medium purity hydrogen

Proton Exchange Membrane (PEM)

- Most popular type
- High purity hydrogen
- Are expensive as use precious metals

Solid Oxide Electrolyser (SOEM)

- Newer technology
 - Have potential to be most efficient

Photoelectrolysis

- Uses only sunlight
 - Undeveloped. Requires undeveloped semicondctors (custom?)

ELECTRICAL SUPPLY FOR ELECTROLYSIS

Electrolysis is achieved by passing a DC current through a membrane

The cells work like a battery charger, operating in constant current with the voltage changing based on the temperature of the cell

Optimal operation at the knee point of current, additional power applied gives lower efficiency of H2 generation

GREEN HYDROGEN CHALLENGE

- Earth shot prise to achieve Green Hydrogen cost of \$1 per kg in 1 decade ("1 1 1")
- Currently \$8 per kg
- Cost breakdown shows power supply contributes 27% of the overall cost of a PEM electrolyser (most common type)
- Electrolysis companies commonly concentrating on the membrane technology, rather than the power supply and use COTS part need support to move into 1MW+

Agenda

- Introduction to Dynex Semiconductor
- Why Hydrogen
- Power supply topologies comparison
- Validation
- Conclusion

Several types of AC to DC converter could be used. Question of choosing the right converter for a given electrolyser:

- 1. Controlled output current or controlled output voltage
- Interaction between the converter and the power source (Power Factor, injected harmonics in the power source,...) 2.
- 3. Efficiency
- 4. Reliability to ensure long lifetime and minimize failures
- Output current ripple (small or big or controlled ?) 5.
- 6. Cost

Тороlоду	Advantages	Drawbacks	
Uncontrolled 3phase rectifier (6- pulse or 12-pulse)	Low cost High reliability High efficiency	Fixed Vout Poor PF High current ripple High current harmonics	
Controlled rectifier (thyristor based rectifier)	<u>Controlled Vout</u> Low cost High reliability High efficiency	Poor PF High current ripple High current harmonics	

* AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges Burin Yodwong 1,2, Damien Guilbert 1, Matheepot Phattanasak

Тороlоду	Advantages	Drawbacks	
Diode rectifier + Buck or Boost converter	Controlled Vout Acceptable current ripple Acceptable reliability Acceptable efficiency Fast current dynamic response	Poor PF cost High current harmonics	AC Source D_1 D_2 D_3 D_4 D_5 D_4
Diode rectifier +	Controlled Vout	Poor PF	
interleaved Buck or Boost converter	<u>Smaller current ripple</u> Acceptable reliability <u>Higher efficiency</u> Fast current dynamic response <u>Availability</u>	<u>Higher cost</u> High current harmonics	AC Source p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_7 p_9

* AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges Burin Yodwong 1,2, Damien Guilbert 1, Matheepot Phattanasak

Тороlоду	Advantages	Drawbacks	
PWM current source rectifier	Controlled Iout Excellent PF Smaller current ripple Efficiency Fast current dynamic response	Cost <u>Complicated control</u> Over-voltage across IGBTs	AC Source S_1 S_2 S_3 S_4 S_5 V_{DC} V_{el} V_{el
Swiss rectifier (buck type PFC rectifier)	Controlled Iout Excellent PF Smaller current ripple <u>Higher Efficiency</u> Fast current dynamic response	Cost	Input Filter $\begin{array}{c c} & L_{F,a} & i_{a} & i_{r,a} \\ & L_{F,b} & i_{b} & i_{r,b} \\ & L_{F,c} & i_{c} & i_{r,c} \\ & U_{CF,a} & C_{F,a} & C_{F,b} & C_{F,c} \\ & U_{CF,a} & C_{F,a} & C_{F,b} & C_{F,c} \\ & U_{CF,a} & C_{F,c} & C_{F,c} \\ & U_{$

* AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges Burin Yodwong 1,2, Damien Guilbert 1, Matheepot Phattanasak

HYDROGEN POWER SUPPLY SPEC

Case of study

- Output Power : 4MW
- Input voltage: 415Vrms/50Hz
- DC Output voltage: 800Vdc
- Current ripple : from 1% to 5%
- Power factor: close to unity

2 different topologies will be analyzed:

Active front end boost converter

DIODE RECTIFIER + BOOST CONVERTER

DIODE RECTIFIER + BOOST CONVERTER Rectifier design

Total losses = 2760W x 6 thyristors + 1500W snubber = **18kW**

Rectifier layout

Length	1000mm
Width	500mm
Height	1000mm

DIODE RECTIFIER + BOOST CONVERTER Boost design

DIODE RECTIFIER + BOOST CONVERTER

Boost optimization

Fsw (Hz)	L (mH)	rms	pk	C (mF)	I_C (Arms)	lout ripple pk-pk (%)	L mass (kg)	SC Losses (kW)	L losses (kW)	Rectifier Losses (kW)	total losses (kW)	eff
500	0.2	7080	7910	15	3275	25	2340	5	10.5	18	33.5	99.2%
1000	0.1	7080	7910	7.5	3275	25	1391	8.2	7.3	18	33.5	99.2%
1500	0.065	7080	7910	5	3275	25	1008	11.5	6.5	18	36	99.1%
2000	0.05	7080	7910	3.75	3275	25	828	14.5	6.4	18	38.9	99.0%
2500	0.04	7080	7910	3	3275	25	809	17.7	6.2	18	41.9	99.0%
3000	0.033	7080	7910	2.5	3275	25	771	21	6	18	45	98.9%
3500	0.028	7080	7910	2.15	3275	25	762	24.1	5.9	18	48	98.8%
4000	0.025	7080	7910	1.875	3275	25	771	27.3	5.9	18	51.2	98.7%

There is always an optimal switching frequency for better efficiency and cost

DC FILTERING FFLI 800V to 1400Vdc

Need of 33 capacitors 340mm * 116mm

@4MW, 2000Hz looks best compromise (efficiency, weight and cost)

DIODE RECTIFIER + BOOST CONVERTER

Design conclusion

ACTIVE FRONT END CONVERTER

Electrical schematic

rectifier/inverter

ACTIVE FRONT END CONVERTER

Design optimization

Fsw (Hz)	L (mH)	IL (Arms)	IL (Apk)	C (mF)	I_C (Arms)	lout ripple pk-pk (%)	L mass (kg)	SC Losses (kW)	L losses (kW)	total losses (kW)	eff
500	0.06	5600	8550	15	3330	25	2054	11.7	11.4	23.1	99.4%
1000	0.055	5600	8550	7	3330	25	1911	18.3	10.1	28.4	99.3%
1500	0.05	5600	8550		3330	25	1778	25	9.45	34.45	99.1%
2000	0.045	5600	8550		3330	25	1645	31.6	8.9	40.5	99.0%
2500	0.04	5600	8550		3330	25	1508	38.8	8.4	47.2	98.8%
3000	0.035	5600	8550		3330	25	1361	45	7.9	52.9	98.7%
3500	0.03	5600	8550		3330	25	1212	51.6	7	58.6	98.5%
4000	0.025	5600	8550		3330	25	1057	58.3	6.4	64.7	98.4%

There is always an optimal switching frequency for better efficiency and cost

DC FILTERING FFLI 800V to 1400Vdc

7

Need of 33 capacitors 340mm * 116mm

@4MW, 2200Hz looks best compromise (efficiency, weight and cost)

ACTIVE FRONT END CONVERTER

Design conclusion

ACTIVE FRONT END CONVERTER Efficiency and Cost Comparison

Agenda

- Introduction to Dynex Semiconductor
- Why Hydrogen
- Power supply topologies comparison
- Validation
- Conclusion

Prototype testing 300kW AFE testing

Functional test and heat run test @ 300kW Vin = 415 Vrms Vout = 800Vdc

No source or load available @ this power rating for the time being

Back to Back testing

Prototype testing

Time (min)

Prototype testing

300kW DC Back to Back testing

Using this B2B, the inductor current could be set to any value if the losses of semiconductor are acceptable

Agenda

- Introduction to Dynex Semiconductor
- Why Hydrogen
- Power supply topologies comparison
- Validation
- Conclusion

Conclusion

- Several power supply topologies has been compared for the Hydrogen power supply market
- Case study: detailed comparison between (D rectifier + Boost) and (AFE) has been done
- Testing using a Back to back converter to avoid using loads