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Prognostics and Diagnostics Overview

Prognostics involves predicting the remaining useful

life and identifying potential failures

Diagnostics focuses on detecting faults and

anomalies to facilitate timely maintenance and

repairs

Data 
Collection

• Accurate and comprehensive data collection from sensors and 
monitoring systems is essential to capture the operational and 
health information of machines and batteries

Data 
Storage 

• Proper storage and organisation of data allow for easy accessibility 
and analysis when developing prognostic and diagnostic models

Data 
Processing

• Advanced data processing techniques, such as data cleaning, pre-
processing, and feature extraction, are employed to transform raw 
data into meaningful information

Fault 
Diagnosis/ 
Prognosis  

• Diagnostics- Fault Detection/ Isolation / Estimation

• Prognostics- State Estimation/ Prediction

Faults 
Handling 

• Condition monitoring 

• Predictive Maintenance 

• Fault Tolerant Control 

Comprehensive Test/Validation is imperative

Stable: System 
design in AI and ML 

should aim for 
stability to ensure 
robust and reliable 

performance 

Trusted: System 
design in AI and ML 

should be built on 
trusted algorithms 

and models

Implementable: 
System design in AI 
and ML should be 

practical and 
implementable in 

real-world 
applications

Efficient: System 
design in AI and ML 

should strive for 
efficiency in terms of 

computational 
resources and real-

time response

Data Driven General Fault Diagnosis/ Prognostic Procedure 
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[] M. Algreer, M. Armstrong, and D. Giaouris, "Active On-Line System Identification of Switch Mode DC-DC Power Converter Based on Efficient Recursive DCD-IIR Adaptive Filter," IEEE Transactions on Power Electronics, vol. 27, pp. 4425-4435, 2012.
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[] M. Ahmeid, M. Armstrong, M. Al-Greer, and S. Gadoue, "Computationally Efficient Self-Tuning Controller for DC-DC Switch Mode Power Converters Based on Partial Update Kalman Filter," IEEE Transactions on Power Electronics, vol. PP, pp. 1-1, 2017.

[] M. Ahmeid, M. Armstrong, S. Gadoue, M. Algreer, P. Missailidis, “Real-Time Parameter Estimation DC-DC Converters Using a Self-tuned Kalman Filter”, IEEE Transactions on Power Electronics, vol.32, pp. 5666 - 5674,July. 2017.

[] M. Al-greer, M. Armstrong, Jin Xu, “Coordinate Descent Auto-Tuning Architecture for Multi Rail DC-DC Switch Mode Power Converters,” in Proc. 19th IEEE Workshop on Control and Modeling for Power Electronics, IEEE COMPEL 2018, Padova, Italy.

[] Jin Xu, M. Armstrong, M. Al-greer, “Computational Burden Reduction in Real-Time System Identification of Multi-Rail Power Converter by Re-using Covariance Matrix Approximation” in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020.
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[] M. Algreer, M. Armstrong, and D. Giaouris, "Adaptive PD+I Control of a Switch-Mode DC-DC Power Converter Using a Recursive FIR Predictor," IEEE Transactions on Industry Applications, vol. 47, pp. 2135-2144, 2011.
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Condition Monitoring and Fault Detections of PMSM

Project: (Sg2\100005): Condition Monitoring of Integrated Motors for Predictive Maintenance & Safe-Operation, TU and METU, Lloyds Foundation, 

June, 2021

Stator Inter-turn Short Circuit 

Faults

▪ The stator winding of a PMSM is

a distributed winding consisting

of 16 series turns stranded by

eight conductors. One of the 16

turns was connected to the test

terminal for the experiment.

Non-Uniform Demagnetisation 

Faults

▪ Non-uniform demagnetisation

was achieved using a test

motor. For this purpose, one

magnet is separated from the

rotor and excessive heat is

applied until it demagnetises.

Static Eccentricity 

Faults 

▪ The inner part of the motor

cage was machined 0.5 mm

from one side, and a shim

was placed on the other side.

When the air gap was 1.8

mm, the displacement of 0.5

mm corresponds to 28%

SEF.
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Content of the short circuit fault 

detection block

Content of the static eccentricity 

fault detection block

[] Aykut Demirel,  a’ El-Dalahmeh, Ozan Keysan, M. Al-greer, “ on-Invasive Real-Time Diagnosis of PMSM Faults Implemented in Motor Control Software for Mission Critical Applications, Measurement, 2023. Under review
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Fault Detection Preliminaries Data Stores Fault Detection

Ia

Rotor Speed

Iq

Ia

Ib

Ic

Rotor Position

Buffer (2 kB)
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Demagnetization 
Fault Detection

Short Circuit 
Fault Detection

Static 
Eccentricity 

Fault Detection

Demagnetization 
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Short Circuit 
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Static Eccentricity 
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Updates in 1 ms Updates in 64 ms
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Memory requirement for data storage of 

the fault detection algorithm

Content of demagnetization 

fault detection block



                                    
   

   

  

 

 

  

  

                          
   

   

   

   

   

   

 

  

  
  
  
  
  

Time-domain diagnostic 

features 

Ensemble Subspace 

Discriminant Tree 

(ESDT)
Health indicators Mathematical expression

Mean
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RMS
𝟏

𝐊
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𝟐

Standard Deviation

σ𝐧=𝟏
𝐊 (𝐢𝐧 −𝐦𝐞𝐚𝐧 𝐢 )

𝟐

𝐊 − 𝟏

Shape Factor 𝐑𝐌𝐒

𝐌𝐞𝐚𝐧

Peak Value The maximum absolute 
value of the stator current 

Impulse Indicator 𝐏𝐞𝐚𝐤 𝐯𝐚𝐥𝐮𝐞

𝐌𝐞𝐚𝐧

Crest Factor 𝐏𝐞𝐚𝐤

𝐑𝐌𝐒

Kurtosis 𝟏

𝐊 − 𝟏

σ𝐧=𝟏
𝐊 (𝐱𝐧 −𝐦𝐞𝐚𝐧 𝐢 )

𝟒

𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐃𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧𝟒

Skewness 𝟏

𝐊 − 𝟏

σ𝐧=𝟏
𝐊 (𝐱𝐧 −𝐦𝐞𝐚𝐧 𝐱 )

𝟑

𝐒𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐃𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧𝟑

Frequency-domain diagnostic 

features 

ESDT Algorithm
1. Input: a set of diagnostic features 𝜒 =

𝑥(1), 𝑥(2), … , 𝑥(𝑑) .
2. Parameters: Number of subspaces K, 

number of features per subspace n, 
weight coefficient α, features quality 
measure 𝑞𝑢𝑎𝑙𝑚(𝑥

𝑐).
3. Output: feature subspace S.
4. For 𝑖 = 1 to k, do
5. 𝑺𝒊⟶ ∅
6. End for
7. Repeat
8. For 𝑖 = 1 to k, do
9. For c= 1 to k, do
10. If  𝒙𝒄 ∉ 𝑆𝑖 then
11. 𝒇𝒔𝒄𝒐𝒓𝒆 𝒙

𝒄 ⟶ 𝜶× 𝑞𝑢𝑎𝑙𝑚 𝑥𝑐 + (1 −
𝛼) × 𝑑𝑖𝑣𝑚(𝑆, 𝑆𝑖 , 𝑥

𝑐)
12. End if
13. End for
14. 𝒙𝒃𝒆𝒔𝒕⟶ 𝒂𝒓𝒈𝒎𝒂𝒙𝒙𝒄𝒇𝒔𝒄𝒐𝒓𝒆 𝒙

𝒄

15. 𝑺𝒊⟶ 𝑺𝒊 ∪ 𝒙𝒃𝒆𝒔𝒕
16. End for
17. Until every subspace consists of n 

features
18. Return S

[] Ma’D El-Dalahmeh, M. Al-greer, Aykut Demirel, Ozan Keysan, “Active Fault Detection Using Time Frequency Diagnostic Features for Electrical Machine”, IET International Conf. on Power Electron., Machines and 
Drives, PEMD, 2022.
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[] Ma’D El-Dalahmeh, M. Al-greer, Aykut Demirel, Ozan Keysan, “Active Fault Detection Using Time Frequency Diagnostic Features for Electrical Machine”, IET International Conf. on Power Electron., Machines and 
Drives, PEMD, 2022.
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Features ranking results

The extracted features for PMSM with 

0.8Nm and running at 1800 rpm

The extracted features for PMSM with 

0.8Nm and running at 2400 rpm

Confusion matrix of the trained model: (1) Healthy class. (2) 3% short circuit. 

(3) 6% short circuit. (4) Demagnetisation fault. (5) Static eccentricity.

PMSM loaded with 1.2 Nm 

and running at 2400 rpm

PMSM loaded with 1.2 Nm and 

running at 2400 rpm

PMSM loaded with 0.8 Nm and 

running at 1800 rpm



[]  a’ El-Dalahmeh, M. Al-greer, Moath El-Dalahmeh, Imran Bashir, Aykut Demirel, Ozan Keysan, “Autonomous Faults Detection of Electrical Machines Using Combined Variational Mode Decomposition Plus Hilbert-Huang Transform and Convolution Neural  etwork”, Journal of

Elsevier, Electrical and Computer Engineering, 2023.

Condition Monitoring and Fault Detections of PMSM

Fault diagnostic results of the PMSM working at

different load torque and speed. (a) PMSM works

at 600 rpm, (b) at 1200 rpm, (c) at 1800 rpm, and

(d) at 2400 rpm.



[] Ma'D El-Dalahmeh, J. Lillystone, M. Al-greer, Mo'Ath El-Dalahmeh, “State of Health Estimation of Lithium-ion Batteries Based on Data- riven  echniques”, in 56th IEEE International Universities Power Engineering Conference, UPEC, 2021.

[] Ma'D El-Dalahmeh, P. Thummarapally, M. Al-greer, Mo'Ath El-Dalahem, “Lithium-ion Batter  Capacit   rediction based on  ime and Frequenc   omains  iagnostics Features”, in 56th IEEE International Universities Power Engineering Conference, UPEC, 2021.

[] A. Gailani, R. Mokidm M. El-Dalahmeh, M. Al-greer, “Anal sis o  Lithium-ion Battery Cells Degradation Based on Different Manufacturers, under review in 55th IEEE International Universities Power Engineering Conference, UPEC 2020.
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LiBs Experiential Calendar and Cycle Aging
Analysis Based on Different Manufactures



SOH=100% SOH=80% SOH=30%

[] Ma'D El-Dalahmeh, M. Al-greer, Mo'Ath El-Dalahem, M.Short, “ ime  Frequenc  Image Anal sis and  rans er learning  or Capacit   stimation o  Lithium-ion Batter  ”,  nergies,     , 13(20), 5447.
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Vt

Battery Cycling 

Measure Battery Voltage at different Capacity Randomized current profile 

Time Frequency Analysis 

Time Frequency Images 

𝑤 𝑎,  =  
1

𝑎 
 𝑥    

 −  

𝑎
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− 

Training 

Data 

Testing 

Data 

Image Processing and Classification 

Pooling Convolution + ReLUConvolution + ReLU

Feature extraction Classification

Capacity 



[]  a’ El-Dalahmeh, M. Al-greer, Moath El- alahmeh, Imran Bashir, “Lithium-ion Batteries Capacity Estimation based on adaptive Empirical Wavelet Transform and LSTM Learning  eural  etwork”, Journal o   nerg  Storage,      

[]  a’ El-Dalahmeh, M. Al-greer, Moath El- alahmeh, Imran Bashir, “Lithium-ion Batteries Capacity Degradation Trajectory Prediction Based on Decomposition Techniques and  ARX Algorithm” in  7th I    International Universities  ower  ngineering Con erence, U  C,       
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t
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t
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 RW1 RW4 RW9 RW14 RW19 RW22 RW25 W5 W9 Average 

RMSE 

(%) 
2.06 1.67 1.96 2.036 2.30 1.51 1.76 0.89 0.91 1.61% 

AE 

(%) 
3.87 3.56 7.39 3.82 4.34 2.69 3.72 1.62 1.50 3.61% 

 



[] Mo'Ath El-Dalahmeh, M. Al-greer,  a’ El- alahmeh, Imran Bashir, “ h sics-Based Model Informed Smooth Particle Filter for Remaining Useful Life Prediction of Lithium-ion Batter ”, Measurement, Elsevier, 2023. 

[]  o’Ath El-Dalahmeh, M. Al-greer, Ma'D El-Dalahem, M.Short, “ ovel Smooth  article Filter  or the Remaining Use ul Li e  rediction o  Lithium-Ion Batteries” I   Smart Grid Journal,      

[] Mo'Ath El-Dalahmeh, M. Al-greer,  a’ El- alahmeh, Imran Bashir, “Online   brid  rognostic  ealth  anagement  rediction Using a  eural  etwork and Smooth  article Filter for Lithium-ion Batteries” in  7th I    International Universities  ower  ngineering Con erence, U  C, 

2022. Best paper awards
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Plans and Vision 

Device/ Component Level 

Microprocessor  Data 

Sensing

IoT Component Data 

Collection

Power Converters/ Machines/ Batteries. Etc., Level Systems Level 

Data Generator

Intelligent Power Electronics 4.0- Cloud-based Health Monitoring and Intelligent Control Platform

Data storage/ Cloud training & 

Computing 

-Digital Twins and Data-Driven Modelling

-Condition Monitoring and Fault Detection

-Optimum Control and Intelligent Control 

-System Identification and Parameter 

estimation

-Optimization and Data Analysis 

-Remaining Useful Prediction, aging, 

degradation, etc., 

Lab data

Field data

Modelling Data
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