

Medium Voltage SiC Based Power Electronics Design and Control for Grid Applications

Fred Wang (fred.wang@utk.edu)

Centre for Power Electronics Annual Conference University of Nottingham July 4-5, 2023

Tennessee – The Energy Valley

CURENT UTK at a Glance

- CURENT was established in 2011 as a 10 year \$40M US NSF/DOE Engineering Research Center, the first US DOE-NSF ERC and only one with a power system focus
- CURENT involves four US institutions with about 25 faculty members and 100 graduate students
- UTK is the lead institution with 10 core faculty members in power systems and power electronics, four affiliated faculty, about 80 graduate students with mostly PhD students, a number of post docs, and undergraduate students
- 35 industry and government partners
- Close collaboration with Oak Ridge National Lab

CURENT Research Scope

Original Vision

 Monitoring, modeling, control and actuation of a nation-wide transmission grid for high efficiency, high reliability, low cost, better accommodation of renewable sources, full utilization of storage, and responsive load.

Expanded Scope

- Transmission & distribution grids
- Microgrids
- Energy storage
- Electrification of transportation and other systems
- Al applications for electrical systems
- Power electronics components, converters, & systems

UTK CURENT Facilities

Low and Medium Power Lab

Packaging Lab Equipment

Conference Room

High Power Lab

Visualization and Control Lab

Grid Emulation Lab - HTB

MV SiC Power Electronics Presentation Outline

- Overview
- □ Benefits of MV SiC Power Electronics for Grid Applications
- MV SiC Power Electronics Converter Design Considering Grid Requirements
- □ Some Example Design and Control Issues
- □ Summary

Grid Applications Call for MV/HV Power Electronics

Series/shunt compensation or power conditioning

Renewable energy source and energy storage interface

 Large power electronic loads (data centers, EV charging stations, large motor drives), microgrids

State-of-the-art MV SiC Devices

For MV SiC devices, SiC bulk resistance dominates the on-state resistance, curve closely follow SiC material 1-D limit.

□ MV SiC devices are from Wolfspeed, GenSiC, USCi and Fuji.

[1] F. Wang and Z. Zhang, "Overview of silicon carbide technology: device, converter, system, and application", CPSS transaction on power electronics and applications, vol. 1, no. 1, 2016.

[2] J W Palmour, L Cheng, V Pala, et al. Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Waikoloa, HI, USA, 15-19 June 2014.

State-of-the-art High Voltage SiC Devices

Η'	V SiC diodes		HV SiC bipolar devices (IGBT, IGCT, and thyristor)			
Voltage/Current	Static	Dynamic	Voltage/Current	Static	Dynamic	
10kV/10A JBS diode (Wolfspeed)	4V@10A	t _{rr} =365ns, Q _{rr} =0.84µC @3.15A	12kV/0.5A p-IGBT (Wolfspeed)	18.6mΩ-cm² @25°C	t _{on} =40ns, t _{off} =2.8µs @1.5kV/0.55A	
10kV/50A 4H-SiC PiN (Wolfspeed)	3.9V@50A, 5.9V@328A	t _{rr} =200ns, di/dt=330kA/s @10kV/20A	12.5kV/35A n-IGBT (Wolfspeed)	5.3mΩ-cm² @32A,25°C	t _{off} =0.65µs @5kV/5A, 25°C	
12.9kV SiC PiN diode (GeneSiC)	3.3mΩ-cm ² @25°C	NA	15kV/20A p-IGBT (Wolfspeed)	6.5V@20A,25 °C	NA	
10kV SiC PiN diode (GeneSiC)	5.75mΩ-cm ² @25°C	t _{rr} =250ns, Q _{rr} =1.67μC @ 2.4kV/24A	15kV/20A n-IGBT (Wolfspeed)	7.0V@20A,25 °C	NA	
10kV/2A SiC JBS diode (GeneSiC)	114.7mΩ-cm ² @25°C	NA	16kV flip-type n-IGBT (Fuji)	6.5V@20A	NA	
10kV/7A SiC JBS diode (GeneSiC)	127.5mΩ-cm ² @25°C	NA	22.6kV/20A n-IGBT (Wolfspeed)	NA	NA	
6.5kV/15A SiC JBS diode (USCi)	3.8V	NA	10kV/8A BJT (GeneSiC)	110mΩ-cm ²	E _{on} =4.2mJ, E _{off} =1.6mJ @5kV/8A	
8kV/5A SiC JBS diode (USCi)	4.0V	NA	6.5kV Thyristor (GeneSiC)	$2.8m\Omega$ -cm ²	dv/dt=1920 V/µs @3.6kV/14.5A	

State-of-the-art MV SiC Devices

HV SiC unipolar devices (MOSFET and JFET)

Voltage/Current	Static	Dynamic
10kV/5A DMOSFET (Wolfspeed)	111mΩ-cm ² @V _{gs} =15V,25°C	E _{on} =240µJ, E _{off} =50µJ @1.0kV/3A,25°C
6.5kV/30A Gen-3 MOSFET (Wolfspeed)	100mΩ-cm²@25°C	NA
10kV/10A MOSFET (Wolfspeed)	127mΩ-cm² @V _{gs} =20V,25°C	E _{on} =4.48mJ, E _{off} =0.81mJ @5.3kV/10A
10kV/20A Gen-3 MOSFET (Wolfspeed)	$86m\Omega$ -cm ² @V _{gs} =20V	E _{on} =6.5mJ, E _{off} =1mJ @6kV/20A
15kV/10A Gen-3 MOSFET (Wolfspeed)	$208m\Omega$ -cm ² @V _{gs} =20V	E _{on} =4.8mJ, E _{off} =1mJ @6kV/10A
6.5kV/15A normally-off JFET (USCi)	350mΩ@25°C	E _{on} =2.71mJ, E _{off} =1.54mJ @3kV/11A
6.5kV super cascode JFET (USCi)	230mΩ@25°C	E _{on} =1.2mJ, E _{off} =0.53mJ @3kV/11A
10kV/240A MOSFET half-bridge module (Wolfspeed)	19.4mΩ	NA
6.5kV/60A JFET half-bridge module (USCi)	100mΩ@25°C	E _{on} =28mJ, E _{off} =9.2mJ @3kV/60A,25°C
1T		

MV SiC Power Electronics Presentation Outline

Overview

- □ Benefits of MV SiC Power Electronics for Grid Applications
- MV SiC Power Electronics Converter Design Considering Grid Requirements
- □ Some Example Design and Control Issues
- **Summary**

SiC Device Applications

Silicon Carbide vs. Silicon

- High breakdown electric field, high voltage rating, low conduction loss
- Fast switching speed, high switching frequency
- Superior thermal characteristics

Applications should take advantages of

- Low loss
- Fast switching speed
- High frequency application

□ Benefits of MV SiC can be realized in several ways

- Direct substitution improved efficiency and power density
- Simplified topology/converter further loss reduction, increased power density, better reliability
- Enable new capability and functionality for system-level (e.g. smart inverters)
- Enable new applications or replace the non-PE equipment (e.g., SST, DC grid)

SiC vs. Silicon 1MW Comparison of Switches

Wolfspeed 10 kV/240A SiC MOSFET

Recent SiC MV Grid-tied Power Converters

SiC PV Converter Benefits in MV AC Grids – Converter Level

SiC-Based PV converter

- Converter topology
 - □ Si-based: 2-level
 - □ SiC-based: 3-level NPC & PSFB
- Transformer
 - □ Si-based: LF transformer
 - □ SiC-based: HF transformer
- LCL filter
- EMI filter

Si solution based on a commercial product SiC solution based on an ARPA_Teproject_{y o}

Specifications of the PV Converter

Specifications (for Si and SiC)						
Input (DC)						
Maximum input power	1.2 MW	Maximum DC current	1.71 kA			
DC voltage	600 V~850 V	Maximum DC voltage	1.1 kV			
DC ripple current	Not given					
	Output (Thre	e-phase AC)				
Nominal output power	1 MW	Maximum output power	1.2 MW			
Nominal AC voltage	400 V (±10%) (Si) 13.8 kV (±10%) (SiC)	Nominal/Max AC current	1,519 A (Si) 44 A (SiC)			
EMC	FCC 15 CLASS B	THD	<3%			
Max Efficiency ⁽¹⁾	98.8%	Power Factor	0.95			
Grid functions Reactive power compensation, power curtailment, low voltage ride-throug (LVRT)						
Ambient temp range	-15 °C~55 °C	Cooling	Forced Air			
(1) Without auxiliary power consumption at min V_{DC}						

RENT

Summary of Converter Design Comparison

- As expected, SiC based MV MW PV inverters can be significantly smaller (73.2%) and lighter (82.9%) than Si counterparts, and can translate into significant cost benefit in future
- Similar design comparison can be extended to BESS converters and other interface converters

SiC PCS Benefits – Converter Level

□ SiC-Based PCS converter 1: 5-level NPC

Converter topologies:

- Si-based: 3-level NPC
- SiC-based 1: 5-level NPC
- SiC-based 2: MMC
- Transformer
 - Si-based: LF transformer
- Output filter

□ SiC-Based PCS converter 2: MMC

Comparison Summary

- SiC-based MV MW PCS converter can be significantly smaller than Si counterparts
 - Weight: SiC-based NPC and MMC save 98% and 92% compared to Si
 - Size: SiC-based NPC and MMC save 98% and 86% compared to Si
 - Efficiency of Si-based NPC is 98.52% @1 kHz, similar to SiC-based NPC 98.6% @20 kHz and MMC 98.6% @10 kHz

	Weight (kg)				Size (m ³)			
	Si- NPC	SiC- NPC 10 kHz	SiC- NPC 20 kHz	SiC- MMC	Si- NPC	SiC- NPC 10 kHz	SiC- NPC 20 kHz	SiC- MMC
Device w/ heatsink	164 kg	43 kg	43 kg	35 kg	0.14 m ³	0.017 m ³	0.017 m ³	0.014 m ³
Inductor	2,700 kg	45 kg	32 kg	143 kg	2.32 m ³	0.016 m ³	0.011 m ³	0.066 m ³
Capacitor	158 kg	26 kg	13 kg	429 kg	0.1 m ³	0.036 m ³	0.018 m ³	0.58 m ³
Busbar	73 kg	9.2 kg	9.2 kg	12 kg	0.008 m ³	0.002 m ³	0.002 m ³	0.002 m ³
Housing	344 kg	13.7 kg	11 kg	69 kg	-	-	-	-
Transformer	5,600 kg	-	-	-	4.12 m ³	-	-	-
Total	9,039 kg	137 kg	108 kg	688 kg	9.24 m ³	0.142 m ³	0.1 m ³	1.33 m ³

SiC PCS Converter for Enhanced Power Quality

- SiC-based PCS, with sufficient control bandwidth, can provide harmonic filtering function
 - Need an extra 150 kVA (15% more) converter for Si-based APF
 - Impact on SiC-based converter rating is minimal (~1%)

	-1 MW	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1 MW
Si-based	14.8%	14.9%	15.0%	15.0%	15.1%	15.1%	15.1%	15.2%	15.2%	15.3%	15.3%
w/o APF	1.001	0.802	0.602	0.403	0.206	0.045	0.206	0.403	0.602	0.802	1.001
Si-based	4.1%	4.5%	4.2%	4.3%	4.2%	4.3%	4.2%	4.4%	4.1%	4.3%	4.2%
w/ APF	1.15	0.95	0.75	0.55	0.35	0.15	0.35	0.55	0.75	0.95	1.15
SiC-based	4.5%	4.3%	4.1%	4.2%	4.3%	4.5%	4.2%	4.4%	4.3%	4.1%	4.2%
	1.01	0.81	0.62	0.43	0.25	0.15	0.25	0.43	0.62	0.81	1.01

SiC PCS Converter for Enhanced Stability

Grid-connected mode

- Si-based PCS: Unstable if capacitor is placed at grid side
- SiC-based PCS: Still stable even though capacitor is placed at grid side

SiC PCS Converter for Enhanced Stability

□Islanded mode

- Si-based PCS: Unstable with heavy capacitive load and multiple RESs
- SiC-based PCS: Still stable even though with heavy capacitive load and multiple RESs

MV SiC Power Electronics Presentation Outline

Overview

- **Benefits of MV SiC Power Electronics for Grid Applications**
- MV SiC Power Electronics Converter Design Considering Grid Requirements
- □ Some Example Design and Control Issues
- **Summary**

A Cascaded H-bridge-based 13.8 kV/1 MW Grid-Connected Converter Design Considering Grid Requirements

Design Requirements

		Power rating	1 MW		
		LV DC	850 V (±5%)		
		MVAC	13.8 kV (-12% ~ 10%)		
	Converter	MV AC frequency	60 Hz (±1.2 Hz)		
	dooign	Efficiency	98 %		
	uesign	Power factor	Four-quadrant operation		
	parameters	Ambient temperature	-25 °C ~ 35 °C		
		Cooling	Forced air / water cooling		
		Voltage control bandwidth	>300 Hz		
		Current control bandwidth	>1 kHz		
			5% current TDD		
		IEEE Std 1547	• VRT		
			• FRT		
	Grid		 Grid Faults 		
	requirements		 Grid unbalance operation 		
		Other requirements	Lightning transient		
			33% unbalance load support in		
2			the islanded mode		
1					

Converter topology

Example - Impact of Voltage Ride Through

- Design goal: continuous operation range: [0.88 p.u., 1.1 p.u.]; converter ride through [0, 0.88 p.u.] and [1.1 p.u., 1.2 p.u.]
- High inrush current and high DC link voltage during grid voltage change transient

of grid voltage change

TENNESSEE KNOXVILLE

PCS Design Considering Grid Requirements

Grid/design requirements	Requirement details	Impact on converter design
Voltage ride through	• The converter needs to ride through the low voltage range of [0, 0.88 p.u.], and the high voltage range of [1.1 p.u., 1.2 p.u.]	 Inrush current, can be effectively limited by the PWM mask function Vdc increased from 6.3 kV to 6.67 kV for 1.2 p.u. grid voltage Power control coordination
Grid faults	 Ride through if TOV <1.2 p.u. If TOV>1.2 p.u., temporarily stop operation 	 Inrush current: up to 5 p.u. Dc-link overvoltage, up to 9.3 kV Extra braking circuit
Frequency ride through	 Continuous operation: [58.8 Hz, 61.2 Hz] Ride through: [50 Hz, 58.8 Hz] and [61.2 Hz, 66 Hz] 	 No inrush and large dc-link overvoltage Need larger dc-link capacitance to limit the dc-link voltage ripple
Grid voltage angle change	 Ride through 20° of positive-sequence phase angle change and up to 60° of individual phase angle change 	 Inrush current, but can be effectively limited by the PWM mask function Dc-link voltage variation, but no need for hardware change
Lightning surge	Ride through the lightning surge	 Inrush current, up to 5 p.u. Dc-link overvoltage, which is not too large thanks to the short period Converter internal component insulation need to consider the potential of the neutral point during the lightning transient

Impact on Converter Size and Weight

- Size increases 26% (commercial capacitors are used, so DC-link capacitor impact is not reflected)
- Weight increases 90%

MV SiC Power Electronics Presentation Outline

- Overview
- Benefits of MV SiC Power Electronics for Grid Applications
- MV SiC Power Electronics Converter Design Considering Grid Requirements
- □ Some Example Design and Control Issues
- □ Summary

10 kV SiC MOSFET Characterization

9

VERSITY OF

KNOXVILLE

I EIN

Characterization of Medium Voltage SiC Devices," IEEE Transactions on Power Electronics, 2023 28

Gate Driver Design and Protection

- 550 ns blanking time required to avoid false triggering
- 600 ns blanking time realized by digital ICs, instead of a large blanking capacitor Cblk
- Short circuit inductance under HSF fault: 171 nH
- Measured digital blanking time: 580 ns
- Response time under HSF fault: 340 ns
- Response time under FUL fault: 195 ns

[1] X. Huang et al., "Comprehensive Analysis and Improvement Methods of Noise Immunity of Desat Protection for High Voltage SiC MOSFETs With High DV/DT," in IEEE Open Journal of Power Electronics, vol. 3, pp. 36-50, 2022.

High Voltage Isolated Power Supply

Low-Interwinding Capacitance Design

- Reduce the trace's width-to-thickness ratio
- Choose the optimal winding-to-core distance
- Reduce winding turns

- ~1.85 pF parasitic capacitance
- >15 kV RMS partial discharge inception voltage

[1] L. Zhang et al., "Design Considerations for High-Voltage Insulated Gate Drive Power Supply for 10-kV SiC MOSFET Applied in Medium-Voltage Converter," *in IEEE Transactions on Industrial Electronics*, vol. 68, no. 7, pp. 5712-5724, July 2021.

Voltage Sensor

MV Inductor Design Considering Grid Overvoltages

[1] H. Li, P. Yao, Z. Gao and F. Wang, "Medium Voltage Converter Inductor Insulation Design Considering Grid Requirements," *IEEE JESTPE*, Vol. 10, No. 2 2022

Insulation for MV Inductors & Transformers

- Impurity and voids in potting process caused insulation failure
- Low viscosity potting material & modified potting process used for high insulation
- Field shaping w/ silicone putty to further reduce electric field hot spot
- Transformers tested complying to IEEE Std. C57.12.91-2020. (PDIV > 12 kVrms)

Failed Dry-type MV winding

Electric field w/ fielding shaping

[1] H. Li, P. Yao, Z. Gao and F. Wang, "Medium Voltage Converter Inductor Insulation Design Considering Grid Requirements," *IEEE JESTPE*, Vol. 10, No. 2 2022

Transformer Leakage Inductance Integration

- Leakage integration caused high loss due to eddy current on core lamination
- Ferrite bridge-based transformer leakage integration reduced the loss

Low loss leakage integration structure & test results

Thermal image of eddy

current loss

RENT

[1] Z. Gao et al "A Medium-Voltage Transformer with Integrated Leakage Inductance for 10 kV

SiC-Based Dual-Active-Bridge Converter", IEEE WIPDA 2022

Transformer Parasitic Capacitance Caused Switching Loss

- Parasitic capacitance due to transformer grounding & shielding $P_{loss} \approx C_{para} V_{dc}^2 f_s$
- Modulation strategy developed to reduce the capacitive switching losses

[1] H. Li et. al. "A PWM Strategy for Cascaded H-bridges to Reduce the Loss Caused by Parasitic Capacitances of Medium Voltage Dual₅Active Bridge Transformers" IEEE ECCE 2022

TENNESSEE TENNESSEE

13.8 kV/ 100 kW PCS for Asynchronous Microgrid

□ Full power test of the PCS module

- Operation of back-to-back PCS module successfully achieved at 25 kV DC bus voltage
- Control implemented to suppress 180 Hz common mode current

13.8 kV/ 100 kW Cascaded DC/DC and DC/AC PCS

Scalable PCS Converter Testing

 Two PCS in parallel tested (13.8 kV RMS line-to-line) for grid-connected and islanded modes

PCS Controller Test on HTB

Summary

- MV SiC can benefit grid power electronics at both converter and system levels
- Grid requirements can significantly impact on MV power converter design
- Fast switching of MV SiC devices results in high *dv*/dt, which, together with high voltage, poses great challenges for converter design (noise immunity, insulation, parasitic loss)

Acknowledgements

This work was supported by DOE Advanced Manufacturing Office through its PowerAmerica program at NCSU, under Award no. DE-EE0008410 and DE-EE0009134, and through ORNL. This work made use of shared facilities sponsored by ERC program of the National Science Foundation (NSF) and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program. The contributions of Southern Company, EPB, Powerex, Wolfspeed, EPC Power, ORNL, GE and NCSU are also acknowledged.

