

Exploiting SiC-MOSFET Modules in High Current Applications

Prof. Stephen Finney Dr. Paul D. Judge Ross Mathieson

Silicon Carbide (4H-SiC) vs Silicon for **Power Semiconductor**

Properties	Si	4H-SiC	
Crystal Structure	Diamond	Hexagonal	
Energy Gap : <i>E</i> _G (eV)	1.12	3.26	Α
Electron Mobility : μ_n (cm ² /Vs)	1400	900	
Hole Mobility : μ_{p} (cm ² /Vs)	600	100	
Breakdown Field : <i>E</i> _B (V/cm) X10 ⁶	0.3	3	В
Thermal Conductivity (W/cm°C)	1.5	4.9	
Saturation Drift Velocity : $v_{\rm s}$ (cm/s) X10 ⁷	1	2.7	C
Relative Dielectric Constamt : ε_{S}	11.8	9.7	
p, n Control	0	0	
Thermal Oxide	0	0	

Can operate at higher temperatures

Thinner drift layer and/or doping concentration required for a given voltage blocking capability

- Results in lower resistance relative to Si
- Higher blocking voltages achievable

С

Α

В

Latest Commercial 1.2 kV High Power SiC MOSFETs

Wolfspeed/Cree CAB400M12XM3

1200 V 450 A XM3 Package Wolfspeed/Cree CAB760M12HM3 ROHM Semiconductor BSM600D12P3G001

1200 V 765 A HM High Performance 62 mm 1200 V 586 A EconoDUAL 3 Package

Latest Experimental/Commercial 3.3 kV SiC MOSFETS

Experimental

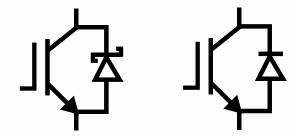
Commercial

Wolfspeed/Cree	Mitsubishi	Mitsubishi	Hitachi
XHV-7	Name not given [1]	FMF750DC-66A	MSM800FS33ALT
3300 V	3300 V	3300 V	3300 V
541 A	1500 A	750 A	800 A
XHP3 Package	HiPak Package	XHV7 Package	nHPD ² Package

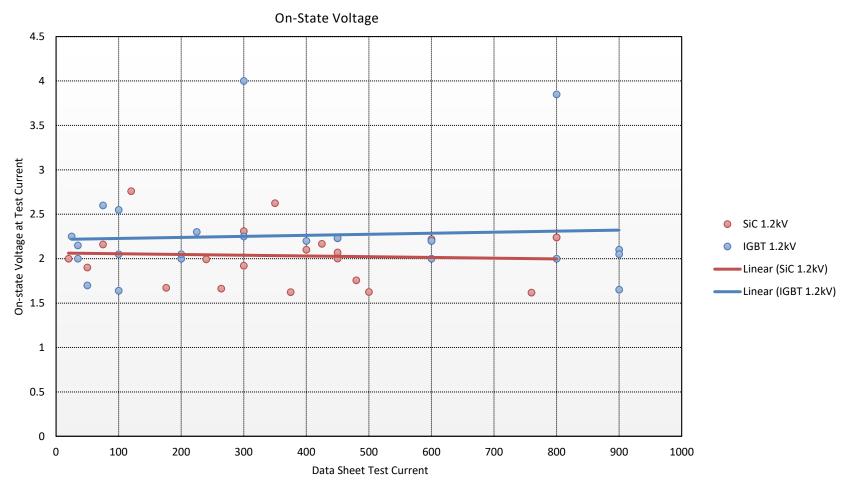
[1] Hamada, Kenji, et al. "3.3 kV/1500 A power modules for the world's first all-SiC traction inverter." *Japanese Journal of Applied Physics* 54.4S (2015): 04DP07.

	Full SiC Module	Si IGBT	Performance Gain
Module Code	CAB400M12XM3	FF400R12KE3	
On-state Voltage (25 C)	2.3	1.7	
On-state Voltage (150 C)	3.6	2	
Turn On Energy	5 mJ	25 mJ	80% Reduction
Turn Off Energy	4.2 mJ	62 mJ	93% Reduction
Reverse Recovery	1 mJ	35 mJ	97% Reduction
Stray Inductance Module	6.7 nH	20 nH	
Stray Test Inductance	Not Given	30 nH	
Overall Switching Energy	10.2 mJ	122 mJ	~91.6% Reduction

	Full SiC Module	Si IGBT	Performance Gain
Module Code	WAB400M12BM3	FF400R12KE3	
On-state Voltage (25 C)	1.3	1.7	
On-state Voltage (150 C)	2.1	2	
Turn On Energy	12.9 mJ	25 mJ	48% Reduction
Turn Off Energy	12.0 mJ	62 mJ	80% Reduction
Reverse Recovery	1.33 mJ	35 mJ	96% Reduction
Stray Inductance Module	10.2 nH	20 nH	
Stray Test Inductance	Not Given	30 nH	
Overall Switching Energy	26.23 mJ	122 mJ	79% Reduction

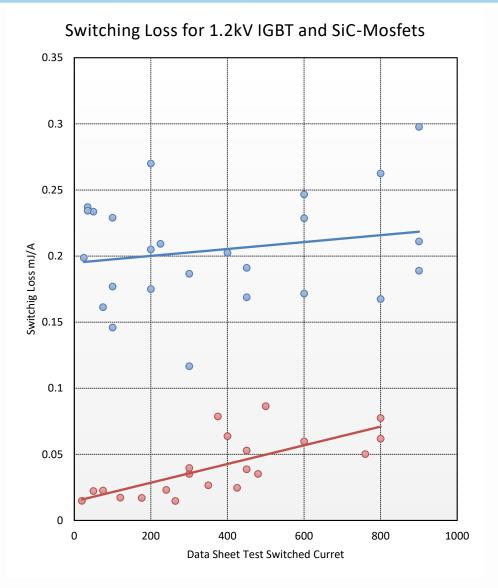

	Full SiC Module	Si IGBT	Performance Gain
Module Code	CAS300M17BM2	SEMiX303GB17E4p	
Drain Source on-state Voltage (25 C)	2.4	1.9	26% Increase
Drain Source on-state Voltage (150 C)	4.8	2.29	110% Increase
Turn On Energy	13 mJ	76 mJ	82% Reduction
Turn Off Energy	10.0 mJ	99 mJ	90% Reduction
Reverse Recovery	Not Given	56 mJ	
Stray Inductance Module	15 nH	20 nH	
Stray Test Inductance	Not Given	30 nH	
Overall Switching Energy (Excluding E _{rr})	23 mJ	175 mJ	86% Reduction (Excluding E _{rr})

	Full SiC Module	Si IGBT	Performance Gain
Module Code	MSM800FS33ALT	MBN800E33E	
Drain Source/Collector Emitter on-state Voltage (25 C)	2.3	3.5 (125 C)	
Drain Source on-state Voltage (150 C)	3.6		
Turn On Energy	0.96 J	1.2 J	25% Reduction
Turn Off Energy	0.37 J	1.3 J	71.5% Reduction
Reverse Recovery	0.06 J	1 J	94% Reduction
Stray Inductance Module	10 nH	18 nH	
Stray Test Inductance	30 nH	30 nH	
Overall Switching Energy	1.39 J	3.5 J	~60% Reduction


3.3 kV 1200 A IGBT vs 3.3 kV 1200 A IGBT w. SiC Schottky Diode

	Si IGBT w. SiC Schottky Diode	Si IGBT	Performance Gain
	MBN1200F33F -C3	MBN1200F33F	
Turn On Energy	1.4 J	2.6 J	46.1% Reduction
Turn Off Energy	2.2 J	2.2 J	0% Reduction
Reverse Recovery	0.1 J	1.7 J	94% Reduction
Stray Inductance Module	10 nH	10 nH	
Overall Switching Energy	3.7 J	6.5 J	43% Energy Reduction

Si IGBT vs. SiC MOSFET Date Sheet Comparison of On-State Voltage Drop for 1.2kV Power Devices/Modules

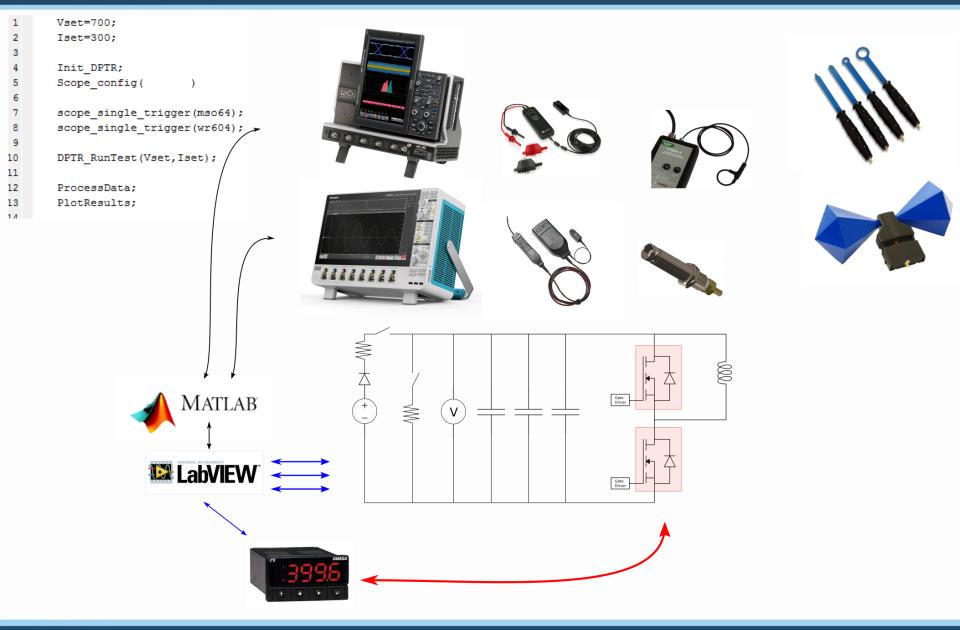


Manufacturers data indicates that:

- SiC devices/Modules can match on-state voltage of equivalently rated IGBTs
- SiC implementations should deliver similar (or slightly improved) conduction losses than IGBTs

Si IGBT vs. SiC MOSFET Date Sheet Comparison of Switching Energies for 1.2kV Power Devices/Modules

Comparison of manufacturers data for $E_{on}+E_{off}$) indicates that:


- SiC devices can achieve lower relative switching energies (mJ/A) than IGBTs with equivalent current rating.
- Relative switching energies increase with device/module current rating.
- This effect is more significant for SiC-Mosfets. Decreasing the benefits of SiC in high current applications.

Experimental Testing of High-Power Semiconductors

Double Pulse Test Rig

The DPTR lets us subject Power Electronic Semiconductor Devices to voltages/currents that they would see in full scale power converters. We can test up to 2000 V and 1500 A at 150°C.

Power Circuit – Busbar & Capacitors

Low Inductance BUSBAR **Decoupling Capacitor** 3mm Copper 430µF, 1.8kV Tinned to stop oxidisation Film cap (PP) 16.1nH Bulk Capacitor 5.4mF, 2.5kV **Decoupling Capacitor** Power film cap 470nF, 2.5kV **Oil-impregnated** Film Cap (PP) **Rapeseed oil** 50 kg weight 640 x 340 x 165mm $C_{Total} = 6.26 mF$ Semiconductor DUT Energy: MOSFET 300V = 280JIGBT 1200V = 4.5kJParallel 2000V = 12.5kJSingle Hybrid Shotgun = 4.4kJ

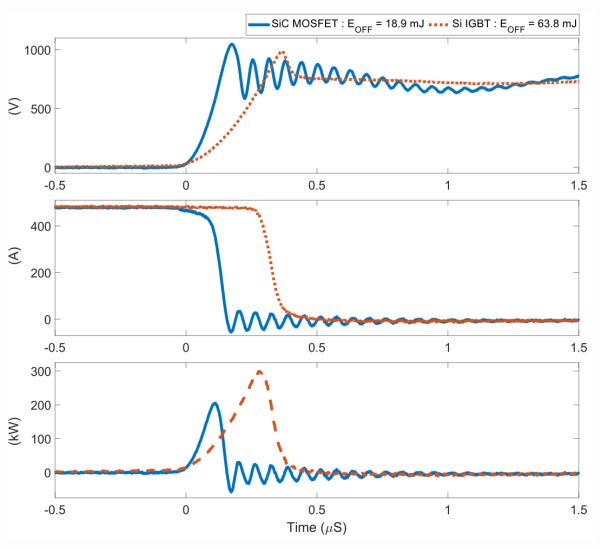
• Three Tektronix IsoVu Probes

The University of Edinburgh

- 1 GHz bandwidth,160dB CMR, 60kV common mode, \pm 5V to \pm 2.5kV differential range
- Capable of measuring low & high voltages (e.g gate-source and drain-source measurements)

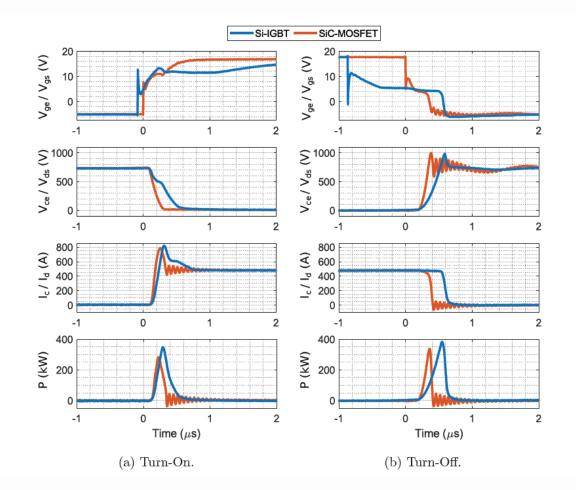
Rogowski Coils (30 MHz & 50 MHz bandwidth) Coaxial Current Viewing Resistors (1.2 GHz bandwidth, Emax) Near field & far field EM probes

Experimental Measurements

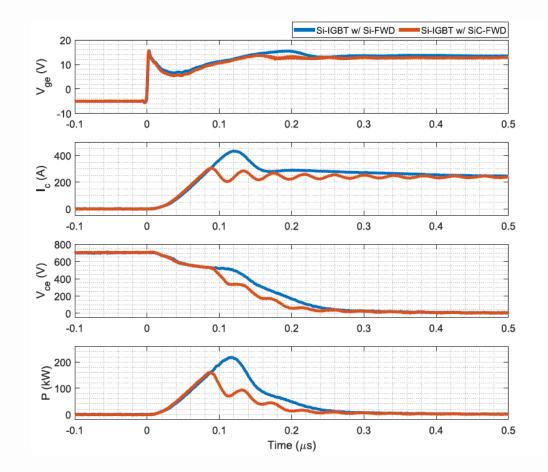

1.2 kV 600 A Devices - SiC MOSFET vs. Si IGBT Turn-Off Comparison

Si-IGBT

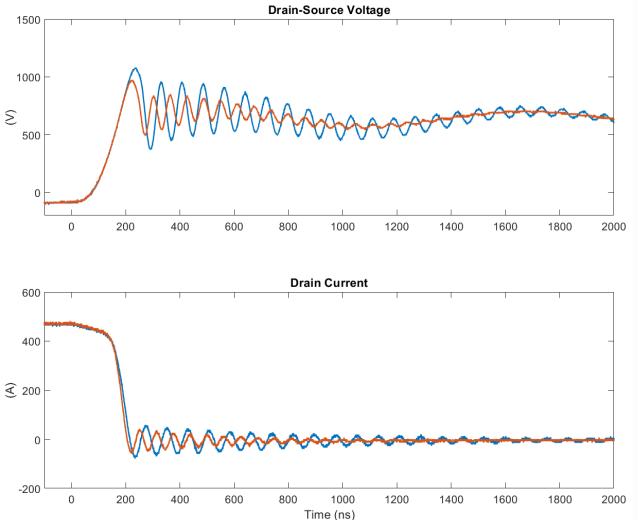
- Very good conduction
- Poor switching
 - Slow IGBT turn off due to excess minority carriers
- Negligible oscillations
- Lower dV/dt similar dI/dt


SIC-MOSFET

- Very good conduction & switching
- Expensive
- Oscillations in voltage & current a major concern due to EMI generation
- Switching performance strongly linked to stray inductance in switching loop


1.2 kV 600 A Devices - SiC MOSFET vs. Si IGBT Switching Comparison

Experimental waveforms of switching transitions, Si-IGBT (FF450R12KT4) compared to SiC-MOSFET (BSM600D12P3G001). Tested at 480 A, 700 V with device baseplate set to 100 $^{\circ}$ C.

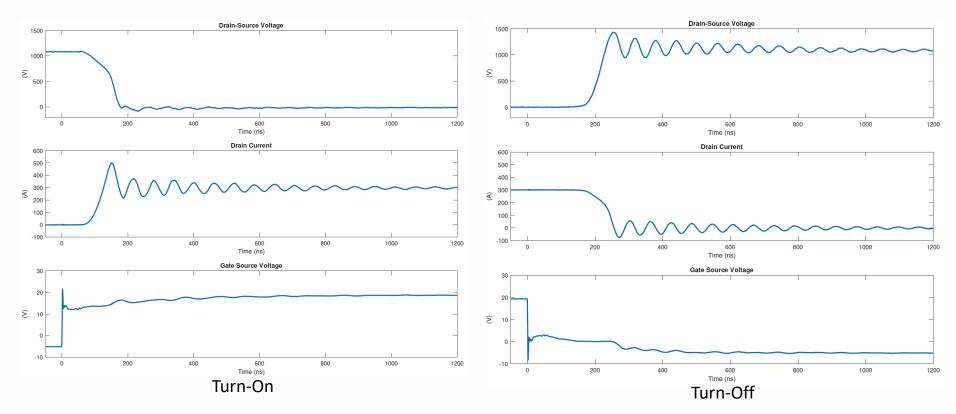

Hybrid IGBT and SiC-SDB Module

Experimental waveforms of turn-on switching transition, standard Si-IGBT with Si-FRD (SKM200GB12F4) compared to Si-IGBT with SiC-SBD (SKM200GB12F4SiC2). Tested at 250 A, 700 V with device baseplate set to 100 $^{\circ}$ C.

Influence of Stray Inductance on Switching Performance

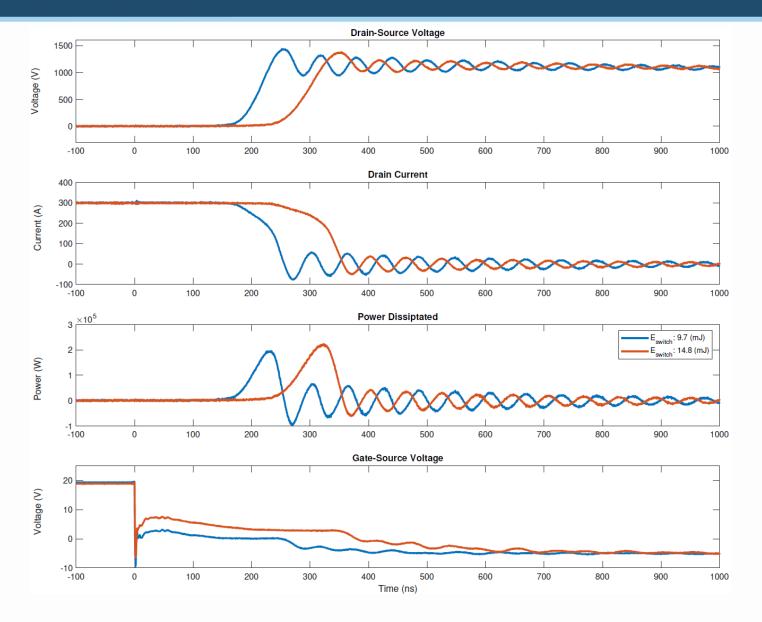
Approximately 2cm of additional commutation loop in the blue case

Significant impact on voltage overshoot (approx. 100V) and voltage/current oscillations


High quality busbar and decoupling capacitors key to exploiting SiC to its full potential

Active Damping of SiC Switching Waveforms

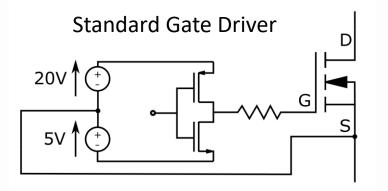
SiC Switching Behaviour

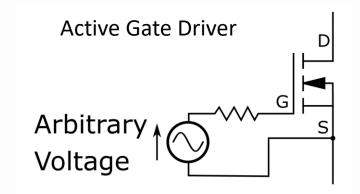


SiC MOSFETS exhibit very oscillatory behaviour during switching transients

- Oscillations in both current and voltage waveforms
- Radiated emissions in both E- and H-fields
- Voltage oscillations can result in conducted emissions through the converters cabling.
- Need to pass EMC standards in order to sell commercially
- We have tested the latest XM3 1.2 kV 400 A SiC MOSFETS from Wolfspeed and gotten 200 A oscillations at 42 MHz

Gate Resistor Impact on Damping





- Standard gate-drivers have fixed voltage levels
 - Drive strength changed by adjusting gate resistors Typical to have different turn-on and turn-off resistors

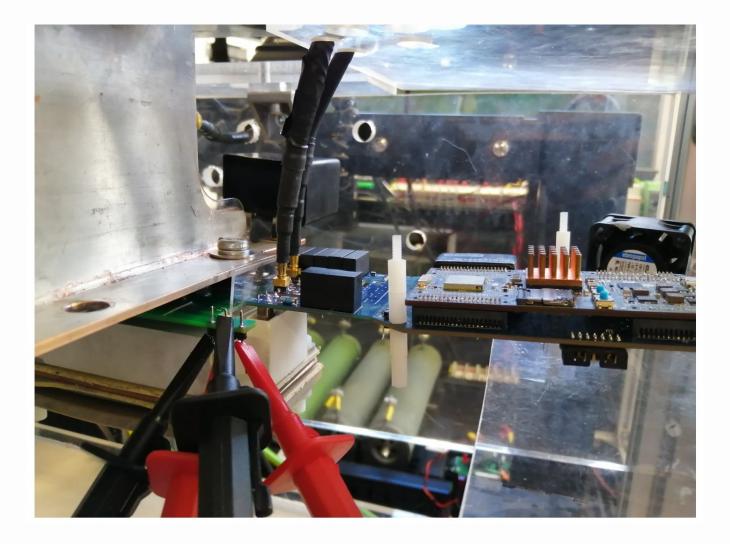
• An active gate driver can attempt to influence the gate voltage of a device whilst it is switching in order to influence its switching behaviour.

- Can either modulate the driving voltage, current or gate resistance (or a combination)
- For SiC MOSFETS this requires a circuit capable of modulating the gate-voltage in the nanosecond scale, while also driving a gate current in the region of 5 A
- Aim to add a significant amount of damping to both the voltage and current waveforms, without impacting switching losses to a large degree
 - Conventional operational amplifiers with these specifications do not exist

The Modular Multilevel Gate Driver

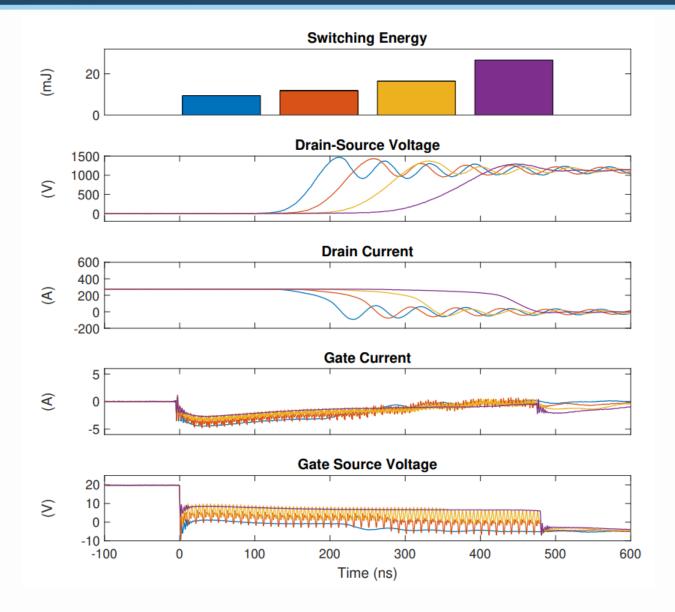
Gate Driver can modulate its output with a resolution of ~2.5 ns

- Light travels approximately 70 cm in this time
- New isolator chips should let us push down closer to 1 ns modulation

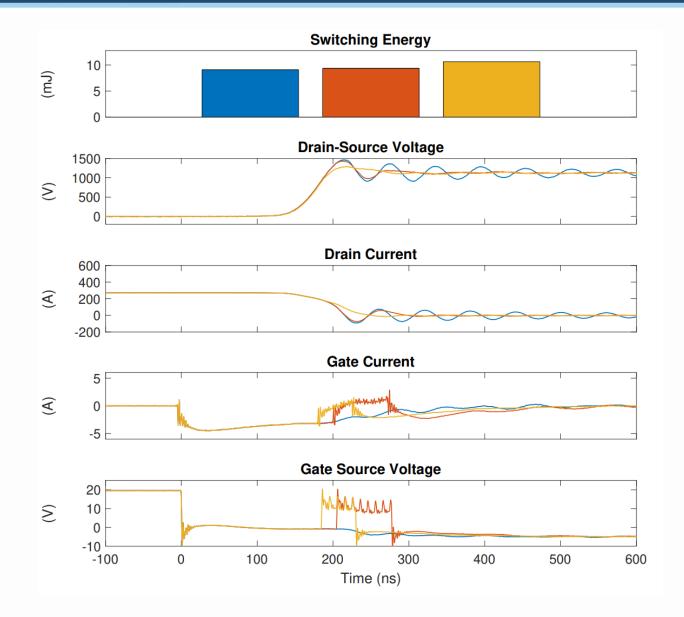


The University of Edinburgh Gate Driver with Control Board Attached

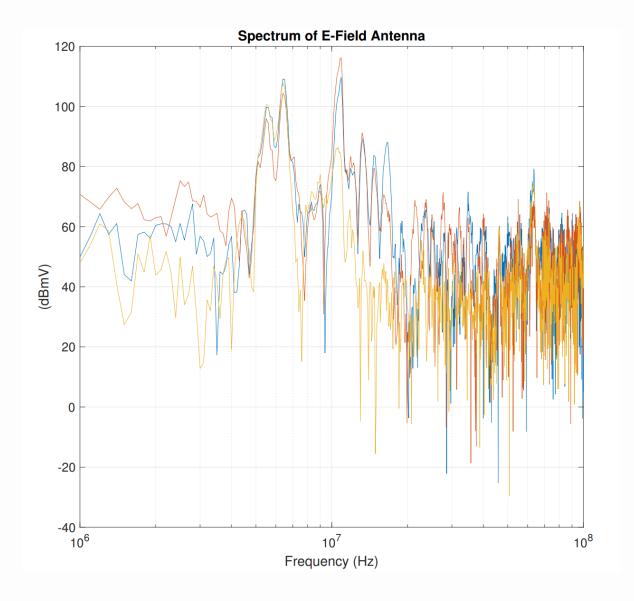
The University of Edinburgh Experimental Setup



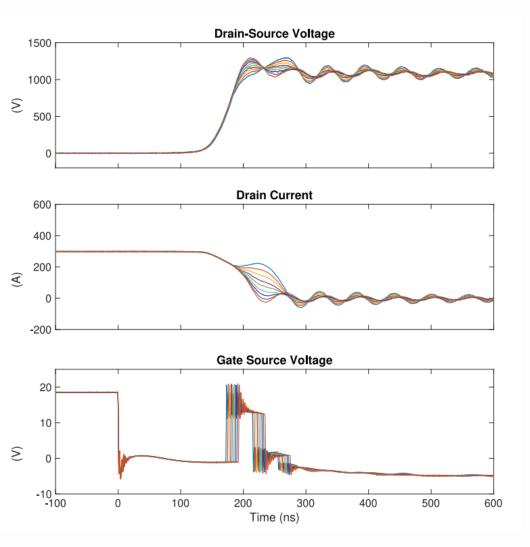
The University of Edinburgh Experimental Setup

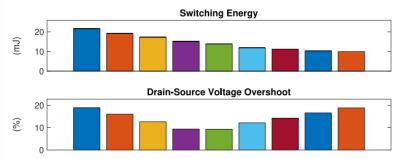


The University of Edinburgh Turn-Off - Variable Pull-Down Strength



The University of Edinburgh Modulated Turn-Off

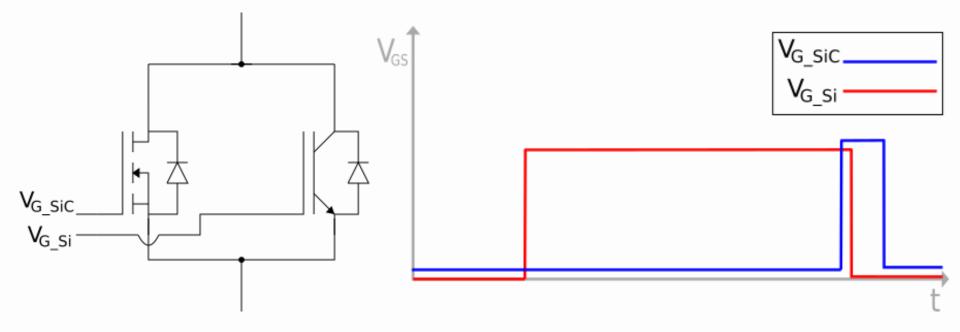



Modulated Turn-Off

Time Sensitivity

Active damping with minimal increase in switching energy loss possible

Results highly time sensitivity


Closing the loop during inverter operation to account for varying loading conditions is a major challenge

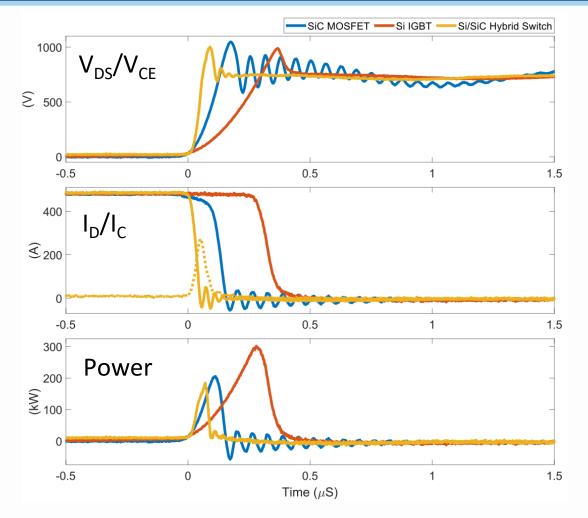
Complimentary Switching of Si-IGBT and SiC-MOSFET Power Modules.

- Si-IGBT and SiC-MOSFET in parallel
- Fully rated Si-IGBT used as main conduction device
- Partially rated (4:1) SiC-MOSFET used as bypass current path during turn-off
 - Faster dV/dt SiC turn-off

R. E. Mathieson, P. D. Judge and S. Finney, "Si/SiC Hybrid Switch for Improved Switching and Part-Load Performance," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020, pp. 1-7

Results – 480 A / 700 V

SiC-MOSFET

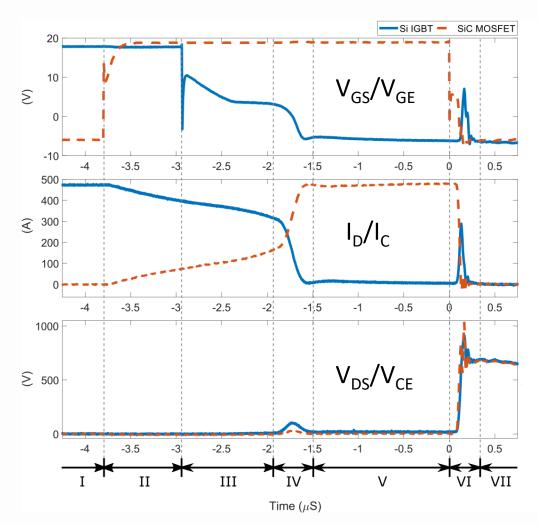

- BSM600D12P3G001
 - 1.2 kV 600 A

Si-IGBT

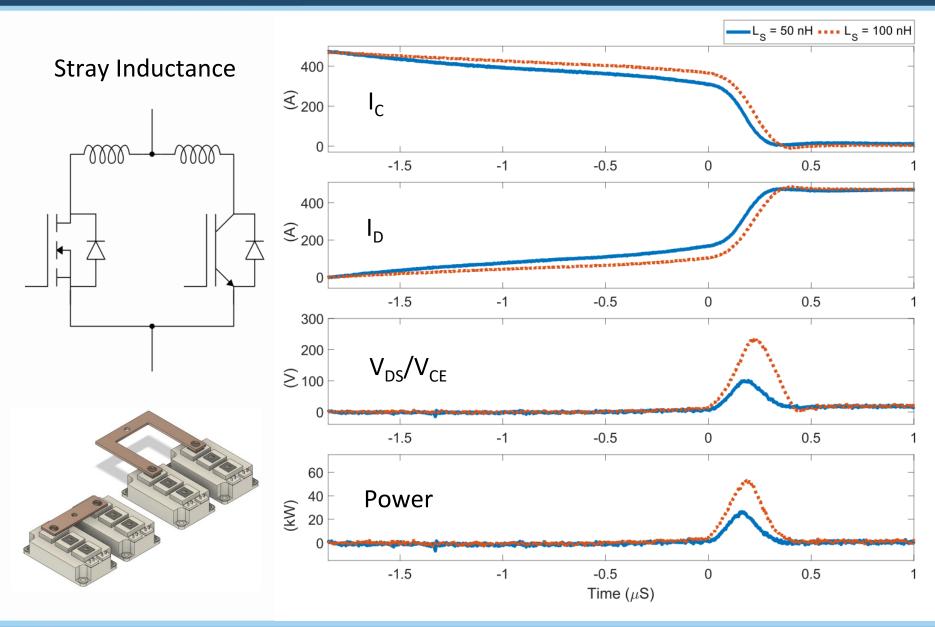
- FF450R12KT4
 - 1.2 kV 450 A

Hybrid Switch

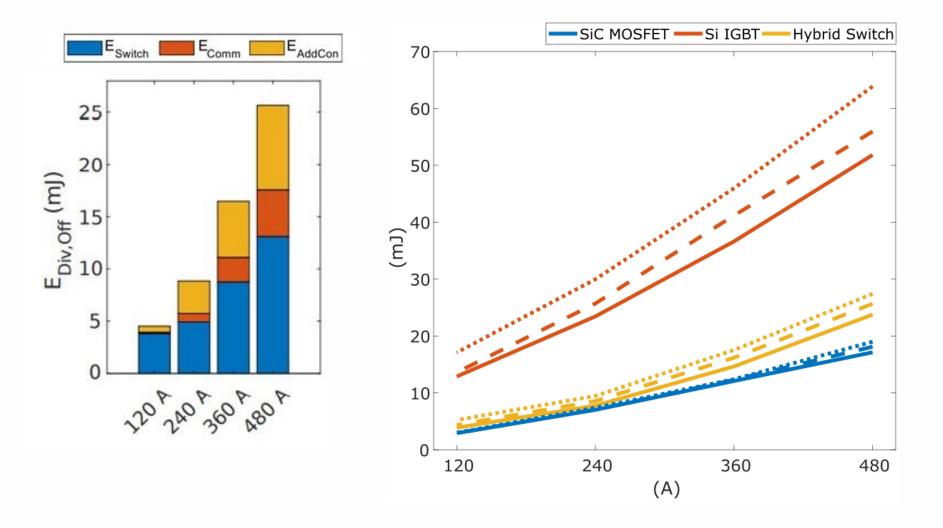
- Si: FF450R12KT4
 - 1.2 kV 450 A
- SiC: CAS120M12BM2
 - 1.2 kV 120 A



- Hybrid Switch has significantly reduced oscillatory behaviour compared to that of the fully rated SiC-MOSFET
- Higher dI/dt & dV/dt values


Turn-Off Switching Scheme

- Majority of losses incurred at final switching edge
- Large dI/dt causes induced voltages on stray inductance between devices during current commutation between devices
- Additional increased energy loss due to higher conduction loss in SiC MOSFET for the period when it conducts



Commutation Energy Loss

The University of Edinburgh Turn-Off Loss Results

Solid – Just IGBT Dashed – With SiC MOSFET In Parallel 20 V_{GE} 10 S 0 -10 0.2 0.3 0.1 0.4 0.5 0.8 0 0.6 0.7 0.9 1000 Device (A) 500 0 0.1 0.2 0.3 0.4 0.5 0.9 0 0.6 0.7 0.8 1 600 V_{DS}/V_{CE} 400 S 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.7 0 400 (kW) 200 Power 0 0.2 0.5 0.1 0.3 0.4 0.6 0.7 0.8 0.9 0 1 Time (μ S)

Negligible difference in turn-on switching loss.

- Additional output capacitance
- Lower reverse recovery in SiC diode

Close to **SiC performance** without a fully rated SiC device.

- 55-70% reduction in turn-off energy
- Close to switching loss of fully rated SiC-MOSFET
 Module design would reduce commutation loss
- Damped oscillatory behaviour
- Higher dI/dt and dV/dt than either Si IGBT or fully-rated SiC MOSFET

Thank You